Lattice QCD Archive Format

V1.02 October 25, 1998

1 Overview

This document describes the format of the data files stored in the QCD
archive. Files consist of an ASCII header followed immediately by binary
data. The header consists of any number of lines of the form (keyword) =(value).
Some of the keywords are required, or have default values. This is spelled
out in sections 2 and 3. At this point, the binary data always consists of
gauge links written in 32-bit IEEE big-endian format. Details are spelled
out in section 4.

2 Header format

The header consists of some number of ASCII lines, beginning with a BEGIN_HEADER,
and ending with END_HEADER. The lines in between are of the form (keyword) =(value).
Exactly one keyword should appearon each line. Certain keywords are re-
quired to appear, while others are optional. For example, we expect a 32-bit
checksum of the binary data, but don’t require that the creation date be spec-

ified. Some keywords require the presence of other keywords. For example, if

the DATATYPE is 4D_SU3_GAUGE (the only choice right now), then DIMENSION_1
through DIMENSION 4 are required. Some keywords have default values, and

do not need to appear explicitly. For example, if FLOATING_POINT is not
defined, data is assumed to be in the default 32-bit IEEE big-endian format.

The keywords are summarized in Table 1.

3 Keywords

Here are comments on each of the keywords defined to date.

e DATATYPE. A required keyword. Specifies the type of data. For now,
the only defined value is “4D_SU3_GAUGE,” which indicates a standard

1

Keyword C Format Sample Values Comments

BEGIN_HEADER required

HDR_VERSION = %s 1.0 (default)

DATATYPE = %s 4D_SU3_GAUGE required

STORAGE _FORMAT = %s 1.0 (default)

DIMENSION_1 = %d 24 required by 4D_SU3_GAUGE
DIMENSION_2 = %d 24 required by 4D_SU3_GAUGE
DIMENSION_3 = %d 24 required by 4D_SU3_GAUGE
DIMENSION_4 = %d 32 required by 4D_SU3_GAUGE
LINK_TRACE = %f 0.8732148 required by 4D_SU3_GAUGE
PLAQUETTE = %f 0.5771234 required by 4D_SU3_GAUGE
BOUNDARY _1 = %s PERIODIC (default) under 4D_SU3_GAUGE
BOUNDARY 2 = %s PERIODIC (default) under 4D_SU3_GAUGE
BOUNDARY 3 = %s PERIODIC (default) under 4D_SU3_GAUGE
BOUNDARY_4 = %s PERIODIC (default) under 4D _SU3_GAUGE
CHECKSUM = %x 4f13a3c7 required

ENSEMBLE_ID = %s OSU_Q60a required

SEQUENCE_NUMBER = %d 10020000 required

ENSEMBLE_LABEL = %s Quenched b=6.0 optional

CREATOR = %s CU-QCDSP optional

CREATOR_HARDWARE = %s QCDSP crate 13 optional

CREATION_DATE = %s Sun Jun 10 1990 optional

ARCHIVE_DATE = %s Mon Sep 28 1998 optional

FLOATING POINT = %s IEEE32BIG (default)

END_HEADER required

Table 1: Keywords, their types as defined by the C format which writes

them, and default or sample values.

4-dimensional hypercubical SU(3) gauge configuration. Some day one
may want to archive eigenmodes of the Dirac operator in 7 dimensions,
and define a value like “7D_E8_EIGENMODE.” We imagine that associated
with each datatype there will be a certain number of required keywords.
For example, 4D_SU3_GAUGE is implicitly hypercubic and requires four
geometry parameters DIMENSION_1 etc., plus a PLAQUETTE, while some
future datatype might require a more geometry parameters, or a quark
mass.

HDR_VERSION. (Defaults to “1.0”.) Specifies the version of this header.
This may stay at version 1.0 forever, but is here just in case.

STORAGE_FORMAT. (Defaults to “1.0”.) Specifies the version format
for this datatype. Again, this may stay at version 1.0 forever. For
4D_SU3_GAUGE, version 1.0 implies various defaults, e.g. 2 rows of
IEEE32 numbers in the order described below.

DIMENSION_1 etc. (Required by 4D_SU3_GAUGE.) Specifies the hypercu-
bical geometry. DIMENSION_1 is the fastest moving direction; DIMENSION_4
is the slowest. For the record, we think of 1 as the z—direction, 2 < ¥,

3 zand 4 < t.

BOUNDARY_1 etc. (Optional under 4D_SU3_GAUGE.) Specifies the bound-
ary conditions in one of the directions. Defaults to PERIODIC.

CHECKSUM. Required by all. The checksum is an unsigned, 32-bit inte-
ger sum of all the 32-bit words making up the binary block following the
header. The ordering is big-endian, so on little-endian machines, one
has to do the byte transposition before computing the checksum. Get-
ting this right gives reassurance that the bytes are correctly assembled
in to words.

LINK_TRACE. Required under 4D_SU3_GAUGE. The average trace of a
link, normalized to 1.0 in the trivial configuration, i.e.

1
1
]-2Nsite %Re ’I\r Uu(n) ()

Note that the trace is over all three colors, and includes one recon-
structed element. Getting this right gives reassurance that that the
data has been assembled in to links correctly.

3

PLAQUETTE. Required under 4D_SU3_GAUGE. The average trace of the
plaquettes, normalized to 1.0 in the trivial configuration, i.e.

1
1 8]Vsi‘ce n,

> Re Tt {U,(m)U,(n+ @)U, (n+)T, (0)'} (2)

(u>v)

ENSEMBLE_ID. Required by all. Unique string to identify the ensemble.
We expect this to be something like “QCDSP_DW98”, where the first
view characters identify the contributing collaboration, and the last
few are a run number. This string forms part of the file name, so we
don’t want it to be too long.

SEQUENCE_NUMBER. Required by all. A unique integer identifying the
configuration within its ensemble. Typically, this will be a trajectory
or sweep number. For the convenience of the end user, we want all
sequence_numbers within an ensemble to have the same number of sig-
nificant digits. Therefore we may offset the numbers by some large
power of 10. E.g. given an ensemble of configurations from trajectory
200 to trajectory 30000, we might number them 1000200 to 1030000.

ENSEMBLE LABEL. An optional string giving a short description of the
ensemble, e.g. “Dynamical Staggered 8**4 beta=5.4 m=0.01". Given
the large number of parameters which may be needed—e.g. 3, (B4, k,
Csw, algorithm, stepsize, trajectory length, etc.—we do not expect this
line will fully describe an ensemble. This field is meant to provide a
quick description, while details will be given on the ensemble’s webpage.

CREATOR. An optional string identifying the collaboration or individual
who provided the data.

CREATOR HARDWARE. An optional string describing the computer on
which the data was generated. Sample values: “QCDSP crate 13” or
“mcurie.nersc.gov”.

CREATION DATE. Optional string, such as that generated by the Unix
command “date,” specifying the date the data was generated.

ARCHIVE DATE. Optional string specifying the date the data was written
in archive format.

e FLOATING_POINT. Optional string specifying the floating point format
of the binary data. By default we use 32-bit IEEE in big-endian order
(IEEE32BIG), but we leave the option open for future needs, e.g. 64-bit
precision. IEEE32 is a synonym for IEEE32BIG.

e Ensemble-dependent keywords. A given ensemble may define other key-
words appropriate for its action. For example, in the first wave of en-
sembles we have defined BETA for the plaquette action and QUARK_MASS
for dynamical ensembles. Future ensembles may require a longer list of
parameters, which could be specified in this way.

4 Storage Order (for 4D SU3 GAUGE)

As indicated above, immediately following the header comes the binary data.
At present we are archiving only 4-dimensional SU(3) gauge configurations
(4D_SU3_GAUGE). For these, the basic object is the link matrix U,(n) which
implements parallel transport to the site n from the site one step in the
positive pth direction (n +). That is, if x(n) transforms as a color triplet
at the site n, then the combination

XN (n)Uu(n)x(n +) Z[X (M)]ilx(n + @) (3)

is gauge invariant.

In terms of the indices ¢, j defined just above, we store a link as complex
numbers in the order Re [Ui1], Im [Uy1] followed by Uis, Uis, Uay, Usg, Usz. By
default, we store only these two rows, understanding that the third row can
be rescontructed as the cross-product. If there is need in the future, we will
define a keyword (with default value 12) to indicate configurations where we
store the full 18 word format.

We store the four links U,(n) adjacently in the order p = 1,---,4. Of
the spacetime indices, DIM ENSION _1 moves the fastest, followed by 2, 3
and 4. That is, with indices arranged according to C convention we store the
data as an array

Ut)[2][y][=][u][d][J] € UINT]N Z][NY][N X][4][2][3] (4)
while in Fortran we would create
complex U(3,2,4, NX,NY,NZ,NT) (5)

